Quantum dynamics of electron transfer in strongly coupled environments

Présenté par Etienne MANGAUD, Laboratoire de Chimie Physique, UMR8000, Université Paris-Sud, ORSAY

Experiments of time-resolved bidimensional spectroscopy carried out in complex
systems, such as photosynthetic systems (FMO)[1] or conjugated polymers[2], showed that quantum coherences amongst electronic excited states can persist for long times, comparable to the electron or excitation energy transfer times.
In order to investigate these phenomena from a theoretical point of view, one needs to
study the quantum motion of the nuclei and its influence onto the transfer. In the systems at stake, photo-induced electron transfer are studied in an oligothiophene-fullerene heterojunction[3] and a chromoprotein cryptochrome[4] as shown on Fig. 1 with a realistic environment.